Original Article

Effect of nitrogen-doping on the surface chemistry and corrosion stability of TiO₂ films

Edvan Almeida de Souza Filho, Eurico Felix Pieretti, Rodrigo Teixeira Bento, Marina Fuser Pillis *

Materials Science and Technology Center, Nuclear and Energy Research Institute (CCTM-IPEN/CNEN), São Paulo, Brazil

A R T I C L E I N F O

Article history:
Received 2 July 2019
Accepted 13 November 2019
Available online 29 November 2019

Keywords:
N-doped TiO₂ films
TiO₂
MOCVD
Corrosion resistance

A B S T R A C T

TiO₂ and N-doped TiO₂ films were grown on AISI 316 stainless steel substrates and on Si (100) by metallorganic chemical vapor deposition (MOCVD) at 400 °C and 500 °C. X-ray photoelectron spectroscopy, scanning electron microscopy, and contact angle techniques were used to characterize the films. The corrosion behavior was assessed by monitoring the open circuit potential, electrochemical impedance spectroscopy and potentiodynamic polarization tests in 3.5 wt% NaCl solution at room temperature. The results show that 6.18 at% of nitrogen was introduced into the films grown at 400 °C and 8.23 at% at 500 °C, and that besides TiO₂, nitrogen phases were identified. All the films are hydrophilic and the contact angles varied from 48° to 72°. The films presented good homogeneity, low porosity and rounded grains in the range of 40–90 nm. The RMS roughness varied between 5.5 and 18.5 nm. Titanium dioxide films grown at 400 °C showed better corrosion resistance than those grown at 500 °C due to its compact morphology. Nitrogen-doping was not efficient to protect the substrate from corrosion.

© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Titanium dioxide has attracted significant interest for many applications, especially due to its stability and high corrosion resistance [1,2], availability, and low cost of production. It presents high dielectric constant and electrical resistivity, high refractive index, and good optical transparency in a wide spectral range. It is extensively used as cosmetics, pigments, building materials, bactericidal surfaces, photocatalysis, biocompatible devices, and solar cells [3–6]. TiO₂ is a transition metal oxide and presents three commonly polymorphs: TiO₂ anatase (tetragonal), brookite (orthorhombic), and rutile (tetragonal) [2,7]. Anatase phase is more stable than rutile at 0 K, but the difference in the enthalpy energy between these two phases is small (~ 2–10 kJ/mol) [8]. The anatase structure is preferred over other polymorphs for solar cell applications, due to the higher electron mobility, lower dielectric constant and lower density. The high photo reactivity is due to the higher Fermi level, the oxygen adsorption capacity and the higher degree of hydroxylation in the anatase phase [9]. The growth temperature of TiO₂ films produced by the MOCVD technique directly affects the structure of these films, and this structure is closely related to their corrosion stability,
and corrosion resistance in chlorine containing medium [10]. Several papers in the literature report on the use of TiO₂ films in the corrosion protection of metallic substrates [10–13].

The good electrical, optical and mechanical properties, besides thermal stability presented for the coatings in the Ti-O-N system makes it interesting for several technological applications. Titanium oxynitride coatings have been used as absorber films, anti-reflective coatings, diffusion barriers in semiconductors and high hardness metallurgical coatings [14]. The use of N-doped TiO₂ coatings as antibacterial surface on stainless steel [15], and as electrode in dye-sensitized solar cells [16] have been reported. Asahi et al. [17] proposed a method to elaborate N-doped TiO₂ anatase films, replacing oxygen atoms by nitrogen atoms. The small difference between the ionic radii of oxygen and nitrogen species would facilitate the substitution of oxygen and would not cause great distortion in the TiO₂ lattice [18]. The functional properties of TiO₂ as the refraction index, electrical conductivity, as well as the mechanical properties are altered according to the nitrogen content incorporated in the structure [19].

When high contents of nitrogen are incorporated into the TiO₂ film, titanium oxynitride TiO₂Nₓ may form, and the modification of the initial structure of the oxide occurs. On the other hand, for low nitrogen contents, the TiO₂ structure is maintained [20]. The structure of the TiO₂Nₓ film may be of the amorphous type, since the nitrogen is known to be a crystallization inhibitor, or cubic when there is a ternary solid solution between TiN and TiO with FCC phase. Results obtained by Duminica et al. [21] in the production of titanium oxynitride films grown by the MOCVD process show that ranging the nitrogen content in the films significant changes in the morphological, structural and mechanical characteristics occur. When a large excess of the nitrogen precursor is used, the film contains about 17 % nitrogen, and forms TiO₂Nₓ with a dense and amorphous structure. Wang et al. [15] studied the corrosion resistance in Hanks’ solution of N-doped TiO₂ films deposited on AISI 304 stainless steel by plasma alloying technique. The results showed that the film was effective to protect the substrate, because the coating retards the local pitting and crevice corrosion of the stainless steel.

Several techniques are available for the synthesis of nitrogen-doped TiO₂ films, such as pulsed laser deposition [22], sputtering [23], sol gel [24], and CVD [18,20,21]. The CVD (chemical vapor deposition) technique consists of reacting compounds in the vapor phase, that are deposited on the surface of a heated substrate, forming a continuous and adherent film [25]. The metallicorganic chemical vapor deposition (MOCVD) is a CVD process that uses organometallic compounds as precursors. This is an attractive process, since it needs lower temperatures of growth than the conventional CVD [25], presents high growth rates, besides allowing the covering of substrates with complex geometries. In this process the composition and structure of the films are determined by the chemical precursors used and by the deposition parameters [18,26,27]. This technique provides a good control of stoichiometry and thickness, uniformity of deposition and the possibility of covering large areas [28].

The aim of this work was to investigate the effect of nitrogen doping on the structure, morphology and electrochemical behavior of TiO₂ films grown by metallicorganic chemical vapour deposition at the temperatures of 400 and 500 °C. The films were grown on AISI 316 substrates. For the characterisation atomic force microscopy, X-ray photoelectron spectroscopy (XPS), and field emission scanning electron microscopy (FE-SEM) analyses were done, besides electrochemical tests.

2. Material and methods

2.1. Substrates

Samples of AISI 316 stainless steel of 20 × 20 × 5 mm, and chemical composition (wt. %) presented in Table 1, were used as substrate. The samples were grounded in SiC papers, diamond polished until 3 μm, degreased in acetone, subsequently in ethanol, rinsed in deionized water, and dried in nitrogen prior of being inserted into the MOCVD reactor. Silicon wafers substrates were also used for convenience in order to determine the growth rate of the films. The surface preparation consisted in the immersion of the samples in a 5 %H₂SO₄ water solution for 3 min, followed by rinsing in deionized water and drying in nitrogen.

2.2. Growth of the films

The 300 nm-thick films were produced in a conventional homemade MOCVD apparatus at the temperatures of 400 °C and 500 °C. For the production of TiO₂ films, only TTIP was used as titanium and oxygen sources, and to obtain N-doped TiO₂, ammonia (NH₃) was added to the system. Nitrogen was used both as the carrier gas to transport the TTIP into the system, and as purge gas. The process parameters are given in Table 2.

Table 1 – Chemical composition of the AISI 316 stainless steel (wt %).

<table>
<thead>
<tr>
<th>Elements</th>
<th>Fe</th>
<th>Cr</th>
<th>Ni</th>
<th>Mo</th>
<th>Mn</th>
<th>S</th>
<th>Si</th>
<th>P</th>
<th>N</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Content</td>
<td>Bal.</td>
<td>17.08</td>
<td>10.29</td>
<td>2.27</td>
<td>1.57</td>
<td>0.72</td>
<td>0.35</td>
<td>0.06</td>
<td>0.10</td>
<td>0.12</td>
</tr>
</tbody>
</table>

Table 2 – MOCVD process parameters.

<table>
<thead>
<tr>
<th>Parameters</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen purge gas flow rate (L/min)</td>
<td>0.5</td>
</tr>
<tr>
<td>Nitrogen carrier gas flow rate (L/min)</td>
<td>0.5</td>
</tr>
<tr>
<td>Ammonia flow rate (mL/min)</td>
<td>0.5</td>
</tr>
<tr>
<td>TTIP temperature (°C)</td>
<td>39</td>
</tr>
<tr>
<td>Substrate temperature (°C)</td>
<td>400 and 500</td>
</tr>
<tr>
<td>Growth pressure (mbar)</td>
<td>50</td>
</tr>
</tbody>
</table>

Table 1 – Chemical composition of the AISI 316 stainless steel (wt %).
2.3. Characterisation

2.3.1. Scanning electron microscopy (SEM)
The cross section of the films grown on silicon substrates was evaluated by FE-SEM in a FEI Quanta 600 electronic microscope. The pits morphology on the surface after electrochemical tests was evaluated in a Hitachi table top microscope model TM3000.

2.3.2. Wettability tests
The surface hydrophilicity of films was evaluated by contact angle measurements in a SEO Phoenix-I equipment. The substrate and the films were stored for 120 h in a dark chamber before the tests to avoid the light interference. The sessile drop method was used by dropping 5 μL of deionized water on the surface. The experiments were done in triplicate for each sample.

2.3.3. Atomic force microscopy (AFM)
Surface topography, roughness measurements and mean grain size of the films were determined by atomic force microscopy operating in air in the tapping mode in a SPM Bruker NanoScope IIIA equipment with a silicon tip under ambient conditions. The AFM images were carried out on 2 μm × 2 μm surface area.

2.3.4. X-ray photoelectron spectroscopy (XPS)
X-ray photoelectron spectroscopy (XPS) analyses were carried out to determine the chemical state of the species close to the solid surface. A Thermo Scientific, K-Alpha model equipment and a spot beam of 400 μm was provided. The high-resolution spectra of Ti2P, O1s and N1s were acquired, and the deconvolution was performed using the algorithm Smart in the software Avantage®. The binding energies were corrected based on the C1s reference peak at 284.8 eV.

2.3.5. Electrochemical behaviour
The electrochemical tests were carried out using a potentiostat-galvanostat EG&G - Princeton Applied Research, Model 273A, with a flat-cell of three electrodes composed of a working electrode with 1.0 cm² of exposed area, a counter-electrode of platinumized platinum and a Saturated Calomel Electrode (SCE) (3 M) as reference. The tests were conducted at room temperature in a 3.5 wt. % NaCl, and the applied potential varied from −600 mV to 2500 mV. The scanning rate was 1.0 mV/s. Before the potentiodynamic polarization tests the surfaces were evaluated by monitoring the open circuit potential vs. time and electrochemical impedance spectroscopy.

3. Results and discussion

3.1. FE-SEM characterization

Fig. 1 shows the cross-section of TiO₂ and N-TiO₂ films grown at 400 °C and 500 °C on Si (100). It can be observed that the interface between the film and the substrate is flat, and that the films grow perpendicular to the surface of the substrate. In the figure it is also possible to observe significant morphological differences between the films. While films grown at 400 °C independently of the doping present a densified morphology, films grown at 500 °C show columnar morphology suggesting that these films present a high level of porosity. The growth rate was estimated by dividing the film thickness by the time of growth. The values found were of 13 and 8 nm.min⁻¹ for undoped and doped TiO₂ grown at 400 °C, respectively, and of 37 and 10 nm.min⁻¹ for TiO₂ and N-TiO₂ grown at 500 °C, respectively. Based on these results 300 nm-thick films were grown on AISI 316 SS substrates.

3.2. Wettability tests
Fig. 2 exhibits the contact angle measurements of the undoped and N-doped TiO₂ films, as well as for the AISI 316 substrate. It was found that the contact angle for water was 77 ° for the steel substrate (Fig. 2a). Undoped TiO₂ film grown at 400 °C (Fig. 2b) presented a contact angle value around 68 °, while the measurement for the undoped film grown at 500 °C (Fig. 2c) was of 72 °. For the doped films the contact angle measurements decreased for 61 ° and 48 °, respectively, for the N-doped films at 400 °C (Fig. 2d) and 500 °C (Fig. 2e).

The results showed that all the films are hydrophilic and suggested that the N-doping process improves the hydrophilicity of TiO₂ films together with the growth temperature, as it is indicated in Table 3. Surfaces that present contact angles ≤ 90 ° are referred as hydrophilic ones whereas contact angles greater than 90 ° corresponds to hydrophobic surfaces [29–31]. The main factors that influence the wettability of surfaces are the superficial microstructure and the chemical composition [32,33].

3.3. AFM characterisation

Figs. 3 and 4 show the surface topography and the three-dimensional AFM images of the TiO₂ films grown at 400 °C and 500 °C, respectively. Figs. 5 and 6 show the surface of the N-TiO₂ films grown at 400 °C and 500 °C, respectively. The films presented good homogeneity, low porosity and rounded grains in the range of 40–90 nm. The images show that TiO₂ grains have grown following the marks left in the substrate by the polishing step. The insert in Figs. 3–6b reveals the columnar structure of the films, that grows perpendicularly to the substrate, as it was described in the literature [18,34], and shown previously by the SEM images. The increase in the growth temperature, promoted the increase of the roughness values and the mean grain size of the films, as it can be seen in Table 3, which suggests an increase on its crystallinity.

The nitrogen doping provoked a decrease in both the RMS roughness and grain size for the undoped and doped TiO₂ films grown at 400 °C and 500 °C. Oja Acik et al. [35] suggested that the doping process stimulate the growth of individually grains. Rojivroon et al. [36] obtained similar trend. The authors deposited TiO₂ and Fe-doped TiO₂ films on 304 stainless steel substrates. The TiO₂ films showed a surface roughness of 18.3 nm, while the 0.3 % Fe-TiO₂ and 0.7 % Fe-TiO₂ films exhibited 11.92 nm and 12.92 nm, respectively. Duminica et al. [21] have grown N-doped TiO₂ films on stainless steel by MOCVD. The films grown at 400 °C presented roughness values around 10 nm – close to the values obtained in the present study. The
authors suggested that the presence of nitrogen at this temperature leads to the amorphization of the films.

3.4. XPS characterisation

The XPS technique was used to analyse the composition and binding energies between the atoms that compose the N-doped TiO$_2$ films obtained at 400 °C and 500 °C. Fig. 7 shows the XPS survey spectrum of the N-doped TiO$_2$ films grown at both temperatures. The peak near 400 eV shows that nitrogen was successfully incorporated into the films. The main components were quantified and the results are listed in Table 4. It is well known that the exposition of the sample to the air results in the contamination by carbon [37]. In addition, residual carbon due to the decomposition of the metallorganic precursor may also be incorporated into the film [37,38]. The carbon content decreases as the growth temperature increases [37].

Fig. 8a–f show the high-resolution XPS core-level spectra of the nitrogen-doped films grown at 400 °C and 500 °C. The chemical bonding states obtained by deconvoluting and fitting the curves are presented in Table 5. Fig. 8a and b show these spectra in the Ti 2p energy region. The doublets of Ti2p at 459.1 eV (2P$_{3/2}$) and 464.8 eV (2P$_{1/2}$) for the films grown at 400 °C and at 458.8 eV (2P$_{3/2}$) and 464.5 eV (2P$_{1/2}$) for the films grown at 500 °C are associated with anatase TiO$_2$. Thus, the highest contribution is due to Ti$^{4+}$, which corresponds to the contributions of Ti$^{4+}$ 2P$_{3/2}$ and 2P$_{1/2}$ of TiO$_2$. These results are in good agreement to the literature [20,21,37,39,40]. The lower energy titanium peak values suggest the formation of Ti-N bonds, and when accompanied by a Ti 2p peak enlargement, confirms the

<table>
<thead>
<tr>
<th>Sample</th>
<th>Deposition temperature [°C]</th>
<th>RMS roughness [nm]</th>
<th>Mean grain size [nm]</th>
<th>Mean contact angle [°]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Substrate</td>
<td>–</td>
<td>9.6</td>
<td>–</td>
<td>77</td>
</tr>
<tr>
<td>TiO$_2$ film</td>
<td>400</td>
<td>12.2</td>
<td>75.8</td>
<td>68</td>
</tr>
<tr>
<td>TiO$_2$ film</td>
<td>500</td>
<td>18.5</td>
<td>87.7</td>
<td>72</td>
</tr>
<tr>
<td>N-TiO$_2$ film</td>
<td>400</td>
<td>5.5</td>
<td>43.6</td>
<td>61</td>
</tr>
<tr>
<td>N-TiO$_2$ film</td>
<td>500</td>
<td>14.7</td>
<td>59.7</td>
<td>48</td>
</tr>
</tbody>
</table>
Fig. 2 – Contact angle measurements. (a) uncoated 316 and coated (b) TiO₂ film grown at 400 °C; (c) TiO₂ film grown at 500 °C; (d) N-doped TiO₂ film grown at 400 °C; (e) N-doped TiO₂ film grown at 500 °C.

Table 4 – Atomic concentration of Ti2p, O1s, N1s and C1s elements.

<table>
<thead>
<tr>
<th>Growth temperature (°C)</th>
<th>Ti2p (at.%)</th>
<th>O1s (at.%)</th>
<th>N1s (at.%)</th>
<th>C1s (at.%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>400</td>
<td>26.70</td>
<td>48.79</td>
<td>6.18</td>
<td>18.33</td>
</tr>
<tr>
<td>500</td>
<td>26.53</td>
<td>52.37</td>
<td>8.23</td>
<td>12.87</td>
</tr>
</tbody>
</table>

Table 5 – The binding energies (BE) of the bonds of N-doped films grown at 400 °C and 500 °C.

<table>
<thead>
<tr>
<th>Component</th>
<th>BE (eV)</th>
<th>FWHM</th>
<th>at.%</th>
<th>BE (eV)</th>
<th>FWHM</th>
<th>at.%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ti²⁺ 2p½/2</td>
<td>459.1</td>
<td>1.45</td>
<td>47.35</td>
<td>458.8</td>
<td>1.63</td>
<td>50.81</td>
</tr>
<tr>
<td>Ti³⁺ 2p½/2</td>
<td>464.8</td>
<td>2.32</td>
<td>26.58</td>
<td>464.5</td>
<td>2.47</td>
<td>27.45</td>
</tr>
<tr>
<td>Ti²⁺ 2p½/2</td>
<td>457.8</td>
<td>2.34</td>
<td>9.03</td>
<td>457.2</td>
<td>1.89</td>
<td>6.17</td>
</tr>
<tr>
<td>Ti³⁺ 2p½/2</td>
<td>461.2</td>
<td>4.71</td>
<td>17.04</td>
<td>461.2</td>
<td>4.42</td>
<td>15.57</td>
</tr>
<tr>
<td>N1s</td>
<td>396.7</td>
<td>1.06</td>
<td>77.97</td>
<td>396.6</td>
<td>1.05</td>
<td>71.21</td>
</tr>
<tr>
<td></td>
<td>397.3</td>
<td>1.70</td>
<td>12.65</td>
<td>397.1</td>
<td>1.89</td>
<td>22.55</td>
</tr>
<tr>
<td></td>
<td>401.1</td>
<td>3.37</td>
<td>9.38</td>
<td>401.7</td>
<td>2.69</td>
<td>6.25</td>
</tr>
<tr>
<td>O1s</td>
<td>530.8</td>
<td>1.30</td>
<td>74.42</td>
<td>530.6</td>
<td>1.33</td>
<td>64.57</td>
</tr>
<tr>
<td></td>
<td>531.6</td>
<td>2.57</td>
<td>25.58</td>
<td>531.7</td>
<td>2.39</td>
<td>35.43</td>
</tr>
</tbody>
</table>

The contribution of Ti³⁺, originating from nitride or oxynitride [21]. The peaks found at 457.89 eV and at 463 eV are due to N-Ti-N and/or O-Ti-N bonds [21,41].

Fig. 8c and d show the high-resolution XPS core-level spectra of the nitrogen-doped films grown at 400 °C and 500 °C in the N1s energy region. Table 5 shows the chemi-
Fig. 3 – AFM surface images of the TiO$_2$ film grown at 400 °C. (a) topography; (b) 3D image. The insert shows the typical columnar structure of the film in details.

cal bonding states obtained by deconvoluting and fitting the curves. The peaks at 396.7 eV and 396.6 eV for films grown at 400 °C and 500 °C, respectively, can be attributed to substitutional nitrogen (β-N) replacing oxygen in the lattice in TiN$_2$O$_7$ [17,20,39,42]. The peaks centered at 397.3 eV and 397.1 eV for films grown at 400 °C and 500 °C can be attributed to Ti-N [42,43]. A broad peak centered on 401 eV was found in the spectra. According to Chen and Burda [44], a broadening peak centered at 401.3 eV can be attributed to O-Ti-N bonds.

Fig. 8e and f show the high-resolution XPS core-level spectra of the nitrogen-doped films grown at 400 °C and 500 °C in the O1s energy region. The peaks at 530.8 eV and 530.6 eV for the films grown at 400 °C and 500 °C, respectively are related to Ti-O linkages in TiO$_2$ [21,38,39,42]. The peaks at around 531.6 eV are attributed to adsorbed water, corresponding to oxygen in hydroxyl groups [21,42].

Fig. 4 – AFM surface images of the TiO$_2$ film grown at 500 °C. (a) topography; (b) 3D image. The insert shows the typical columnar structure of the film in details.

3.5. Electrochemical behavior

The corrosion resistance of the AISI 316 stainless steel samples was evaluated by electrochemical methods analyzing an area corresponding to 1 cm2. The results show the reproducible behavior obtained in 3 trials for each condition.

The open circuits potential vs. immersion time (OCP) curves for uncoated and 300 nm-thick coated AISI 316 stainless steel are presented in Fig. 9. The sample covered by N-doped TiO$_2$ film grown at 400 °C showed a slight increase in its potential in the initial minutes of the test and then a constant decrease of the potential as the immersion time increases. The sample covered by the N-doped TiO$_2$ film grown at 500 °C showed a sudden drop in the first minutes, and soon after, a tendency to stabilization. For the undoped film grown at 400 °C the curve suggests the breakdown and recomposition of the passive layer in the first half of the test but shows a tendency to stabilize at a potential close to the substrate.
The sample coated with TiO$_2$ film grown at 500 °C presented a more homogeneous behavior in the same immersion periods in 3.5 % p NaCl, in relation to its pairs, and shows greater stability of the film. Nitrogen doped films showed stabilization in OCP lower than those presented by the samples covered by undoped films. In addition, films grown at 400 °C stabilize at higher potentials than those grown at 500 °C.

The anti-corrosion properties of these coatings were evaluated via electrochemical impedance spectroscopy (EIS). For comparison reasons the substrate without coatings was also evaluated and the results are presented in Fig. 10. The tests were performed after OCP and prior to polarization, and all coatings showed inferior impedance values comparing to the substrate. Nyquist plots revealed that the films grown at 400 °C presented higher impedance than films grown at 500 °C for both conditions and N- doped TiO$_2$ film grown at 500 °C presented the minor value, corresponding to a lesser protective behavior.

Fig. 5 – AFM surface images of the N-doped TiO$_2$ film grown at 400 °C. (a) topography; (b) 3D image. The insert shows the typical columnar structure of the film in details.

Fig. 6 – AFM surface images of the N-doped TiO$_2$ film grown at 500 °C. (a) topography; (b) 3D image. The insert shows the typical columnar structure of the film in details.

Fig. 7 – XPS survey spectra of N-doped TiO$_2$ films grown at 400 and 500 °C.
Fig. 8 – XPS core-level spectra of the N-doped TiO$_2$ films grown at 400 °C (a, c, e) and at 500 °C (b, d, f).

Table 6 – EIS fitting parameters adjusted using the ECs shown in Fig. 11 for uncoated and titanium-based coated AISI 316 austenitic stainless steel.

<table>
<thead>
<tr>
<th></th>
<th>R1 (Ω.cm2)</th>
<th>CPE2 (cm$^{-2}$s$^{-n}$Ω)</th>
<th>n 2</th>
<th>R2 (Ω.cm2)</th>
<th>C3 (cm$^{-2}$s$^{-n}$Ω)</th>
<th>R3 (Ω.cm2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Substrate</td>
<td>376.9</td>
<td>2.12 × 10$^{-5}$</td>
<td>0.8579</td>
<td>1.20 × 106</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>TiO$_2$ 400$^\circ$C</td>
<td>377.7</td>
<td>2.02 × 10$^{-5}$</td>
<td>0.8661</td>
<td>1.67 × 105</td>
<td>1.76 × 10$^{-6}$</td>
<td>9.28 × 105</td>
</tr>
<tr>
<td>TiO$_2$ 500$^\circ$C</td>
<td>287.0</td>
<td>9.40 × 10$^{-6}$</td>
<td>0.9154</td>
<td>1.49 × 106</td>
<td>7.74 × 10$^{-6}$</td>
<td>8.68 × 105</td>
</tr>
<tr>
<td>N-TiO$_2$ 400$^\circ$C</td>
<td>377.5</td>
<td>1.89 × 10$^{-5}$</td>
<td>0.7259</td>
<td>983.8</td>
<td>1.82 × 10$^{-5}$</td>
<td>1.23 × 106</td>
</tr>
<tr>
<td>N-TiO$_2$ 500$^\circ$C</td>
<td>201.9</td>
<td>1.80 × 10$^{-4}$</td>
<td>0.4534</td>
<td>498.8</td>
<td>5.95 × 10$^{-5}$</td>
<td>4.23 × 105</td>
</tr>
</tbody>
</table>
Fig. 9 – Open circuit potential curves for the substrate, TiO$_2$ and N-doped TiO$_2$ films.

Fig. 10 – Electrochemical impedance spectroscopy (Nyquist plots) for the substrate, TiO$_2$ and N-doped TiO$_2$ films grown at 400 °C and 500 °C.

Fig. 11 shows two separate electrical equivalent circuits (EEC) that were used to model the EIS data. This approach is commonly present in the literature [45–47]. The CPE is the constant phase element, C is the capacitance, R_1 is the solution resistance, R_2 is the titanium oxide based-film resistance and R_3 is the passive layer resistance. The circuit shown in Fig. 11a was the one that best fits the uncoated sample. In Fig. 11b it can be seen the EEC for the coated specimens. The extracted values are presented in Table 6.

The lowest n2 values were found for N-TiO$_2$ samples. The capacitance CPE2 is associated to the resistance R2. The values presented for N-TiO$_2$ sample at 500 °C are one order of magnitude higher than those obtained for the uncoated (substrate) sample. This result indicates the presence of a more defective film on this surface. The inner layer resistance R_3, which is related to chromium oxides, showed values for N-TiO$_2$ samples five and six orders of magnitude higher for the films grown...
at 500 and 400 °C, respectively, than those obtained for the same films for R2.

Fig. 12 shows the linear polarization curves for the substrate, TiO₂ and N-doped TiO₂ films grown at 400 °C and 500 °C. It can be observed that the substrate presents well-defined passive layer formation with corrosion potential of −276 mV and corrosion current of 0.163 µA cm⁻². The breakdown of the passive film occurred at approximately +440 mV. The TiO₂ covered at 400 °C sample presents values of corrosion potential a little nobler than the substrate, and corrosion current density about an order of magnitude lower. It presents a passive region with breaking potential of 482 mV, very close to the uncoated steel. The sample covered by the N-doped TiO₂ film grown at 400 °C showed potential and corrosion current similar to the undoped film and presents a very discrete passive region. The samples coated at 500 °C with TiO₂ and N-doped TiO₂ films showed no passive film formation, and the curves are representative of film dissolution. It is observed that the films produced at 500 °C showed a tendency to dissolve, apart they were doped or not.

Values of corrosion potential (E_{corr}), break potential (E_{break}), and corrosion current density (I_{corr}) were determined from the polarization curves and are displayed in Table 7.

The shift on the corrosion potential for TiO₂ and N-doped TiO₂ samples obtained at 400 °C may be explained by the morphology obtained that diminish the access of the NaCl solution to the substrate. Similar results were found for AISI 316L SS and AISI 304L SS coated by titanium oxides in different media [48-50].

Fig. 13a and b show the surface of the sample covered by TiO₂ at 400 °C after potentiodynamic polarization test, evidencing corrosion pits on the film that exposes the substrate. The substrate dissolution under the TiO₂ layer is evidenced in this figure, which corroborates the passive behavior presented by this sample. However, despite the passivation, the passive film breaking potential was in the same order that the substrate. Fig. 14 shows the surface of the stainless steel AISI 316 covered by an N-doped TiO₂ film of grown at 400 °C, after potentiodynamic polarization test in 3.5 % NaCl solution at room temperature and shows the delamination of the film.

TiO₂ films grown at 400 °C tend to offer better alloy protection than those grown at 500 °C, probably due to the microstructural characteristics. Films grown at 500 °C showed a columnar structure, which represents a high level of porosity, while the films grown at 400 °C presented a denser structure. Similar results were reported by Antunes et al. [10]. In relation to the nitrogen-doping, the contents added not only do not protect the alloy, but also showed a deleterious effect on its corrosion resistance. A possible explanation is the formation of nitrogen-rich phases besides TiO₂. Furthermore, the surface of the samples is hydrophilic, that is, has high affinity

<table>
<thead>
<tr>
<th>Table 7 – Electrochemical parameters determined from the potentiodynamic polarization curves shown in Fig. 12.</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_{corr} (mV)</td>
</tr>
<tr>
<td>------------------------</td>
</tr>
<tr>
<td>Uncoated</td>
</tr>
<tr>
<td>TiO₂ 400 °C</td>
</tr>
<tr>
<td>TiO₂ 500 °C</td>
</tr>
<tr>
<td>N-TiO₂ 400 °C</td>
</tr>
<tr>
<td>N-TiO₂ 500 °C</td>
</tr>
</tbody>
</table>

Fig. 11 – ECs used to simulate the EIS experimental data: (a) uncoated AISI 316 stainless steel; (b) coated AISI 316 stainless steel.

Fig. 12 – Linear polarization curves for the substrate, TiO₂ and N-doped TiO₂ films grown at 400 °C and 500 °C.
for water [51] and affects the corrosion behavior of the films [52].

The corrosion process in the films starts at the films surface that is in contact with the aggressive medium. A pit is formed in the film, which allows the corrosive medium to access the metallic substrate. The metal is attacked and dissolved under the film, and results in its delamination.

4. Conclusions

Undoped and nitrogen-doped TiO$_2$ films were grown on AISI 316 stainless steel substrates by the metallorganic chemical vapour deposition technique using titanium tetraisopoxide as titanium and oxygen precursors, and ammonia as nitrogen source. It was shown that the growth temperature influences the films morphology, the phases formed, as well as the nitrogen content incorporated into the films. All the films showed columnar morphology; however, at 500 °C the microstructure is more porous.

Nitrogen was successfully incorporated into the TiO$_2$ films in a content of 6.18 at% at 400 °C and 8.23 at% at 500 °C. Besides TiO$_2$, nitrogen-rich phases were identified in the films. All the films presented hydrophilic characteristics and the contact angles varied from 48° to 72°.

The films presented good homogeneity, low porosity and rounded grains in the range of 40–90 nm. The increase in the growth temperature, promoted the increase of the roughness values and the mean grain size of the films.

TiO$_2$ films grown at 400 °C showed better corrosion protection than those grown at 500 °C, due to their microstructural differences. Films grown at 500 °C showed a porous columnar structure, which represents a high level of porosity that favours the access of the electrolyte, while the films grown at 400 °C presented a denser columnar structure. Nitrogen doping, in the incorporated contents, was not efficient to protect the substrate from corrosion possibly due to the formation of the nitrogen-rich phases.

Conflict of interest

The authors declare no conflict of interest.
Acknowledgements

The authors are thankful to the Brazilian Nanotechnology National Laboratory - LnNano for XPS analyses, and to the Brazilian agencies CAFES, CNPq (Proc. 168935/2018-0) and FAPESP (Proc. 05/55861-4) for the financial support.

REFERENCES

