Original Article

Electrical and magnetic properties of NiTiO₃ nanoparticles synthesized by the sol–gel synthesis method and microwave sintering

Pavithra C. a, *, Madhuri W. a, b

a Center for Crystal Growth, VIT University, Vellore, Tamil Nadu 632 014, India
b Leibniz Institute for Solid State and Materials Research, Dresden 01069, Germany

A R T I C L E   I N F O

Article history:
Received 24 August 2016
Accepted 26 July 2017
Available online 29 May 2019

Keywords:
NiTiO₃
X-ray diffraction
HRSEM
Impedance analysis
M–H curve

A B S T R A C T

In this paper, we focused on microwave sintered NiTiO₃ nanoparticles synthesized via sol–gel method. The crystal structure was determined by the X-ray diffraction. Vibrational bands related to Ni–O and Ti–O bands were confirmed using the Fourier transform infrared spectrum. These NiTiO₃ ceramics obeyed semiconductor behavior of Arrhenius type. The activation energy was found to be 0.04 μeV. The M–H curve exhibited superparamagnetic behavior at room temperature.

© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Inorganic materials especially in lead titanate, barium titanate, strontium titanate, cobalt titanate and nickel titanate have wide applications in electronic industry. These are piezoelectric in nature. A few of them can exhibit an antiferromagnetism [1]. Metal oxide nanoparticles are important to develop advanced catalyst and sensory materials [2]. Titanium based perovskite ATiO₃ (A=Pb, Ba, Sr, Zn and Ni) are widely used in photoemission and photocatalysis. NiTiO₃ is used as an photocatalyst in the removal of organic pollutants from gas sensitivity [3]. NiTiO₃ is an n-type semiconductor with wide-spread usage [4]. At room temperature, it exhibits antiferromagnetism due to order–disorder transition between Ni and Ti which is also responsible for high curie transition temperature, Tc = 1570 [5].

Different methods are successfully synthesized the NiTiO₃ such as, solid state, hydrothermal, molten salt, polymeric precursor, electrospinning and a sol–gel method. Electrospinning method yielded good results in X-ray diffraction at 600 °C calcination temperature though there is no addition TiO₂ was present. Of all synthesis methods, sol–gel technique is easy to process, having homogenate and controlled reaction [6–12]. The work objective is to synthesize NiTiO₃ nano-particles by sol–gel and then process by sintering, this is the first time to report the microwave sintered NiTiO₃ ceramics. Compared to conventional sintering, microwave sintering consumes less energy and time. The ceramics sintered in
microwaves have exhibited high density, uniform grain growth and homogeneous [13–15]. Therefore, in this paper, we present how NiTiO₃ nanoparticles are obtained by the sol–gel synthesis, microwave processing and its structural, microstructural, electrical and magnetic characterization.

2. Experimental details

2.1. Sol–gel synthesis of NiTiO₃ nanoparticles

Initially, analytical grade nickel nitrate [Sigma-Aldrich, 97.0%, Ni(NO₃)₂·6H₂O] and titanium(IV) butoxide [Sigma-Aldrich, 97.0%, Ti(OC₄H₉)₄] are taken in a stoichiometric ratio. Then nickel nitrate is dissolved in 16.88 mL of glacial acetic acid under continuous stirring. This mixed solution is dehydrated at 100 ºC for 20 min and is cooled to room temperature. Then, titanium (IV) butoxide is added very slowly under constant stirring for 45 min at room temperature. Next, the mixture of ethanol and water are added drop by drop to prevent fast gelation. Then the gel is heated at 100 ºC in an oven to obtain nanoparticles. Further, the prepared powder is calcined at 730 ºC for 45 min at the rate of 30 ºC per min in a microwave furnace. The green sample is grinded using agate mortar for 6 h. Finally, the powder is pressed into pellet and densification is done at 1000 ºC for 45 min at the rate of 30 ºC per min in a microwave furnace.

2.2. Characterizations

X-ray diffraction is carried out using powder X-ray instrument (Bruker D8) with Cu Kα radiation (1.5406 Å). FT-IR is recorded using Siemens Instrument. The surface morphological and compositional analyses were studied using high resolution scanning electron microscope (FEI Quanta FEG 200) and energy dispersive X-ray spectrometer (EDX). Conductivity and impedance spectroscopy of nickel titanate are carried out using the LCR Hi TESTER (HIOKI-3532-50). The sample is placed between the electrodes of the computer interfaced oven. The magnetic properties of nickel titanate are studied by VSM instrument (LAKESHORE-7407).

3. Results and discussion

3.1. Structural and microstructural characterization

Fig. 1 shows the X-ray diffraction pattern of NiTiO₃. All the peaks of X-ray diffraction pattern are matching with JCPDS file no 83-0198 and [5]. The appearance of the small additional TiO₂ rutile phase peak is represented by ‘∗’ which is also confirmed in the JCPDS file no 87-1165. Approximately 15% of rutile phase is estimated by Reitvelds analysis. The rutile phase is more stable than anatase phase at a high temperature [16]. These peaks represent rhombohedral crystal structure and R3 space group. The lattice parameters are evaluated using the powder X software and are found to be a = b = 5.03 Å and c = 13.79 Å. The volume of the unit cell is found to be 348 Å³, these values match with those in Ref. [5]. Density (according to Archimedes principle) and porosity are estimated using

\[
\rho_B = \frac{m_{air} - m_{xylens}}{m_{air}} \times \rho_{xylens} \tag{1}
\]

\[
P = 1 - \left( \frac{\rho_B}{\rho_X} \right) \tag{2}
\]

\[
d = \frac{8M}{N_a a^2} \tag{3}
\]

where M is the molecular weight of the corresponding composition, N is the Avogadro’s number (6.026 × 10²³ atoms mol⁻¹) and a² is the volume of the unit cell.

The average crystal size is 46 nm calculated using the relation (4):

\[
G = \frac{K \lambda}{\beta \cos \theta} \tag{4}
\]

where k=0.9, λ is the wavelength of X-rays, Cu Kα radiation (∼1.54 Å), β is the full width half maximum and θ is the angle of the diffraction.

Fig. 2 shows the differential scanning calorimetry (DSC) and thermo-gravimetric analysis (TGA) of NiTiO₃. DSC is used to analyze the endothermic and/or exothermic process of the material, and it measures the phase change, purity, evaporation, melting point, crystallization and heat capacity etc. The DSC curve shows the initial endothermic peak at 76.02 ºC, the dehydration from 53 ºC to 130 ºC. An exothermic peak at 309.24 ºC is a decomposition of residual organic compounds. A small peak at 400 ºC is due to the formation of NiO. A small shoulder around 420 ºC indicated the initiation of ordered solid state transitions leading to the formation of NiTiO₃. TGA curve shows the decomposition of the materials at three points indicating the weight loss of the material. The first weight loss is due to dehydration of water molecules, and the observed weight loss is 15.13%. The second weight loss has been observed from 100 ºC to 320 ºC is 34.94%. It has occurred due to decomposition of nickel, titanate and residual organic compounds. The third weight loss 320 ºC to 600 ºC due to
degradation of butoxide. Finally, crystallization of NiTiO$_3$ has occurred [6,8,10,17] after 600 °C with no weight loss.

The bond formation in the sample is studied using FT-IR analysis in the range 4000–400 cm$^{-1}$. The characteristic vibration of metal–oxygen bond is supposed to be in the range 700–400 cm$^{-1}$. Fig. 3 shows the FT-IR spectrum of NiTiO$_3$. The wavelengths of 673.15 cm$^{-1}$ and 526.56 cm$^{-1}$ are stretching vibrations of Ni–O and Ti–O bonds. The sharp absorption peak at 459.05 cm$^{-1}$ confirms the metal titanate bond Ti–O–Ni [5].

Fig. 4(a) and (b) shows the morphology and elemental analysis of NiTiO$_3$. The high-resolution scanning electron microscope (HRSEM) image shows (Fig. 4(a)) uniform grain growth and size distribution of NiTiO$_3$. The particle size is between 56.5 nm and 71.9 nm. The energy dispersive spectrum in Fig. 4(b) shows no impurities in the synthesized NiTiO$_3$.

3.2. Electrical analysis

3.2.1. Impedance analysis

The complex impedance spectroscopy technique gives an insight into various contributions of the electrical characteristics of the material. The Cole–Cole plot is plotted between the real and imaginary parts of the impedance. The shape of these plots is usually like two semicircles where the semicircle at a lower frequency is electrical contribution due to grain boundaries while the second arises due to grains and occurs at higher frequencies [18]. Fig. 5 shows the Cole–Cole plot of NiTiO$_3$ in 400–500 °C temperature range. Center of the semicircles lies below the X-axis called as non-Debye
relaxation. In the plot, it can be noted a single semi-circle is present at higher frequency region. This indicates the intra-grain conduction and no effect of grain boundaries. The relaxation frequency and time at all temperatures can be estimated using the relation:

$$\tau = \frac{1}{\omega} \quad \text{(or)} \quad R_b C_b \quad (5)$$

where $$\omega = 2\pi f_{\text{max}}, f_{\text{max}}$$ is applied frequency corresponding to the arc maximum. The conduction of the material is calculated using the relation:

$$\sigma_{dc} = \frac{L}{AR_b} \quad (6)$$

where the intercept of the semicircle with X-axis gives the bulk resistance $$R_b$$ (ohm), L is the thickness and A is the cross-sectional area of the pelletized NiTiO₃ sample (in cm), and $$\sigma$$ is the conductivity (S cm⁻¹). The inset of Fig. 5 represents the equivalent RC circuit of the bulk conductance of NiTiO₃. The value of bulk capacitance is calculated using the relation $$2\pi f_{\text{max}} R_b C_b = 1 \text{ (or)} \omega R_b C_b = 1$$. The value of relaxation time can be evaluated using the $$R_b$$ and $$C_b$$ values. The calculated values are tabulated in Table 1. It is observed that the relaxation time is decreased with an increase in temperature. It is indicating an increase in the electrical conductance with increase in temperature. Similar semiconducting behavior is noticed and reported [19,20] in polycrystalline complex titanium ceramics. Fig. 6 shows the variation of $$\sigma_{dc}$$ with the inverse of temperature (1000/T). The linearity of the plot is associated with thermally activated behavior. The activation energy is found to be 0.041 eV. Frequency dependence of conductivity is plotted at various temperatures ranging from 490 °C to 560 °C in Fig. 7. At low frequencies, the conductance is steady and low which may be accounted for dc conduction. A linear increase is noticed from 0.1 MHz to 5 MHz, which indicated the dominant role of grains in conduction mechanism than grain boundaries. A small shoulder (kink) noticed at 4 MHz must be due to instrumental error as 5 MHz is the limit of the instrument.

### Table 1 - Conductance parameters from Cole–Cole plot.

<table>
<thead>
<tr>
<th>Temperature(°C)</th>
<th>$$R_b \times 10^7$$ ohm</th>
<th>$$C_b$$ μF</th>
<th>$$\tau$$ (s)</th>
<th>$$\sigma_{dc}$$ (S cm⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>400</td>
<td>5.0192</td>
<td>6.345</td>
<td>3.184 x 10⁻⁴</td>
<td>5.454 x 10⁻⁸</td>
</tr>
<tr>
<td>420</td>
<td>2.9509</td>
<td>7.708</td>
<td>2.274 x 10⁻⁴</td>
<td>9.282 x 10⁻⁸</td>
</tr>
<tr>
<td>440</td>
<td>1.0485</td>
<td>5.062</td>
<td>5.307 x 10⁻⁵</td>
<td>2.612 x 10⁻⁷</td>
</tr>
<tr>
<td>460</td>
<td>0.2815</td>
<td>5.655</td>
<td>1.592 x 10⁻⁵</td>
<td>9.728 x 10⁻⁷</td>
</tr>
<tr>
<td>480</td>
<td>0.1438</td>
<td>5.533</td>
<td>7.961 x 10⁻⁶</td>
<td>1.903 x 10⁻⁶</td>
</tr>
<tr>
<td>500</td>
<td>0.1060</td>
<td>5.002</td>
<td>5.307 x 10⁻⁵</td>
<td>2.581 x 10⁻⁶</td>
</tr>
<tr>
<td>520</td>
<td>0.0539</td>
<td>5.903</td>
<td>1.592 x 10⁻⁶</td>
<td>5.078 x 10⁻⁶</td>
</tr>
<tr>
<td>540</td>
<td>0.0484</td>
<td>3.283</td>
<td>1.592 x 10⁻⁶</td>
<td>5.649 x 10⁻⁶</td>
</tr>
<tr>
<td>560</td>
<td>0.0449</td>
<td>3.540</td>
<td>1.592 x 10⁻⁶</td>
<td>6.091 x 10⁻⁶</td>
</tr>
</tbody>
</table>

### Fig. 6 – Arrhenius plot of NiTiO₃.

### Fig. 7 – Conductance spectra of NT at different temperature.

3.3 Magnetic studies

The field dependence of magnetic moment in an applied field of ±15 kV at room temperature is shown in Fig. 8. The narrow peak shows the existence of ferromagnetic materials in the sample. At low-temperatures NiTiO₃ exhibits antiferromagnetic behavior while ferromagnetic behavior at high temperatures, as reported elsewhere [5]. In the entire range of applied field, NiTiO₃ is not saturated. This may be due to high antiferromagnetic interactions at room temperature. The spin interaction between the Ni²⁺–Ni²⁺ ions is more, so high magnetic field is required to align the spins in the field direction. The coercive field, retentivity and magnetization are 195.72 G, 220.91 x 10⁻⁶ emu and 15.894 x 10⁻³ emu respectively. These
low values indicate that NiTiO$_3$ is super paramagnetic in nature.

4. Summary and conclusion

In summary, we have obtained with success NiTiO$_3$ nanoparticles synthesized by the sol-gel method and processed in microwaves at 1000 °C for 45 min. X-ray diffractions patterns confirm the rhombohedral phase and dense NiTiO$_3$ formation. Thermal analysis of DSC and TGA confirms the crystallization stating point at 600 °C. FTIR characterization of NiTiO$_3$ confirms the Ni–O, Ti–O and Ni–O–Ti bond formations and their corresponding vibrational frequencies. HRSEM analysis revealed uniform grain growth with a particle size distribution between 56 nm and 71 nm. EDX spectrum confirms the purity of synthesized NiTiO$_3$. Conductivity studies confirm the semiconducting nature of NiTiO$_3$ and activation energy is estimated to be 0.04 μeV. Magnetometry measurements have revealed superparamagnetic behavior at room temperature.

Conflicts of interest

The authors declare no conflicts of interest.

REFERENCES